Internal
problem
ID
[11948]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
21
Date
solved
:
Sunday, March 30, 2025 at 09:25:56 PM
CAS
classification
:
[_Riccati]
ode:=x^(n+1)*diff(y(x),x) = a*x^(2*n)*y(x)^2+c*x^m+d; dsolve(ode,y(x), singsol=all);
ode=x^(n+1)*D[y[x],x]==a*x^(2*n)*y[x]^2+c*x^m+d; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") c = symbols("c") d = symbols("d") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-a*x**(2*n)*y(x)**2 - c*x**m - d + x**(n + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*x**(n - 1)*y(x)**2 - c*x**(m - n - 1) - d*x**(-n - 1) + Derivative(y(x), x) cannot be solved by the factorable group method