Internal
problem
ID
[11944]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
17
Date
solved
:
Sunday, March 30, 2025 at 09:25:08 PM
CAS
classification
:
[_rational, _Riccati]
ode:=(c__2*x^2+b__2*x+a__2)*(diff(y(x),x)+lambda*y(x)^2)+a__0 = 0; dsolve(ode,y(x), singsol=all);
ode=(c2*x^2+b2*x+a2)*(D[y[x],x]+\[Lambda]*y[x]^2)+a0==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a__0 = symbols("a__0") a__2 = symbols("a__2") b__2 = symbols("b__2") c__2 = symbols("c__2") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(a__0 + (lambda_*y(x)**2 + Derivative(y(x), x))*(a__2 + b__2*x + c__2*x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out