Internal
problem
ID
[11942]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 09:24:58 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x^2*diff(y(x),x) = a*x^2*y(x)^2+b*x^n+c; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==a*x^2*y[x]^2+b*x^n+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-a*x**2*y(x)**2 - b*x**n - c + x**2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**2*y(x)**2 + b*x**n + c)/x**2 cannot be solved by the factorable group method