61.2.6 problem 6

Internal problem ID [11933]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 6
Date solved : Sunday, March 30, 2025 at 09:21:40 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=a y^{2}+b \,x^{2 n}+c \,x^{n -1} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 343
ode:=diff(y(x),x) = a*y(x)^2+b*x^(2*n)+c*x^(n-1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (\left (\frac {n}{2}+1\right ) \sqrt {b}-\frac {i c \sqrt {a}}{2}\right ) \operatorname {WhittakerM}\left (-\frac {\left (-2 n -2\right ) \sqrt {b}+i c \sqrt {a}}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right )-\sqrt {b}\, c_1 \left (n +1\right ) \operatorname {WhittakerW}\left (-\frac {\left (-2 n -2\right ) \sqrt {b}+i c \sqrt {a}}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right )+\left (-\frac {\sqrt {b}\, n}{2}+i \sqrt {a}\, \left (x^{n} b x +\frac {c}{2}\right )\right ) \left (\operatorname {WhittakerW}\left (-\frac {i \sqrt {a}\, c}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right ) c_1 +\operatorname {WhittakerM}\left (-\frac {i \sqrt {a}\, c}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right )\right )}{\sqrt {b}\, \left (\operatorname {WhittakerW}\left (-\frac {i \sqrt {a}\, c}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right ) c_1 +\operatorname {WhittakerM}\left (-\frac {i \sqrt {a}\, c}{\sqrt {b}\, \left (2 n +2\right )}, \frac {1}{2 n +2}, \frac {2 i \sqrt {a}\, \sqrt {b}\, x^{n} x}{n +1}\right )\right ) a x} \]
Mathematica. Time used: 1.151 (sec). Leaf size: 982
ode=D[y[x],x]==a*y[x]^2+b*x^(2*n)+c*x^(n-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*y(x)**2 - b*x**(2*n) - c*x**(n - 1) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*y(x)**2 - b*x**(2*n) - c*x**(n - 1) + Derivative(y(x), x) cannot be solved by the lie group method