Internal
problem
ID
[11835]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1912
Date
solved
:
Sunday, March 30, 2025 at 09:18:14 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = a*x__2(t)+b*x__3(t)*cos(c*t)+b*x__4(t)*sin(c*t), diff(x__2(t),t) = -a*x__1(t)+b*x__3(t)*sin(c*t)-b*x__4(t)*cos(c*t), diff(x__3(t),t) = -b*x__1(t)*cos(c*t)-b*x__2(t)*sin(c*t)+a*x__4(t), diff(x__4(t),t) = -b*x__1(t)*sin(c*t)+b*x__2(t)*cos(c*t)-a*x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==a*x2[t]+b*x3[t]*Cos[c*t]+b*x4[t]*Sin[c*t],D[ x2[t],t]==-a*x1[t]+b*x3[t]*Sin[c*t]-b*x4[t]*Cos[c*t],D[ x3[t],t]==-b*x1[t]*Cos[c*t]-b*x2[t]*Sin[c*t]+a*x4[t],D[ x4[t],t]==-b*x1[t]*Sin[c*t]+b*x2[t]*Cos[c*t]-a*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") c = symbols("c") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-a*x__2(t) - b*x__3(t)*cos(c*t) - b*x__4(t)*sin(c*t) + Derivative(x__1(t), t),0),Eq(a*x__1(t) - b*x__3(t)*sin(c*t) + b*x__4(t)*cos(c*t) + Derivative(x__2(t), t),0),Eq(-a*x__4(t) + b*x__1(t)*cos(c*t) + b*x__2(t)*sin(c*t) + Derivative(x__3(t), t),0),Eq(a*x__3(t) + b*x__1(t)*sin(c*t) - b*x__2(t)*cos(c*t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
NotImplementedError :