Internal
problem
ID
[11833]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1910
Date
solved
:
Sunday, March 30, 2025 at 09:18:12 PM
CAS
classification
:
system_of_ODEs
ode:=[t*diff(x(t),t) = 2*x(t)-t, t^3*diff(y(t),t) = -x(t)+t^2*y(t)+t, t^4*diff(z(t),t) = -x(t)-t^2*y(t)+t^3*z(t)+t]; dsolve(ode);
ode={t*D[x[t],t]==2*x[t]-t,t^3*D[y[t],t]==-x[t]+t^2*y[t]+t,t^4*D[z[t],t]==-x[t]-t^2*y[t]+t^3*z[t]+t}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(t*Derivative(x(t), t) + t - 2*x(t),0),Eq(t**3*Derivative(y(t), t) - t**2*y(t) - t + x(t),0),Eq(t**4*Derivative(z(t), t) - t**3*z(t) + t**2*y(t) - t + x(t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
ValueError : substitution cannot create dummy dependencies