Internal
problem
ID
[11819]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1895
Date
solved
:
Sunday, March 30, 2025 at 09:15:59 PM
CAS
classification
:
system_of_ODEs
ode:=[a11*diff(diff(x(t),t),t)+b11*diff(x(t),t)+c11*x(t)+a12*diff(diff(y(t),t),t)+b12*diff(y(t),t)+c12*y(t) = 0, a21*diff(diff(x(t),t),t)+b21*diff(x(t),t)+c21*x(t)+a22*diff(diff(y(t),t),t)+b22*diff(y(t),t)+c22*y(t) = 0]; dsolve(ode);
ode={a11*D[x[t],{t,2}]+b11*D[x[t],t]+c11*x[t]+a12*D[y[t],{t,2}]+b12*D[y[t],t]+c12*y[t]==0,a21*D[x[t],{t,2}]+b21*D[x[t],t]+c21*x[t]+a22*D[y[t],{t,2}]+b22*D[y[t],t]+c22*y[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") a11 = symbols("a11") a12 = symbols("a12") a21 = symbols("a21") a22 = symbols("a22") b11 = symbols("b11") b12 = symbols("b12") b21 = symbols("b21") b22 = symbols("b22") c11 = symbols("c11") c12 = symbols("c12") c21 = symbols("c21") c22 = symbols("c22") x = Function("x") y = Function("y") ode=[Eq(a11*Derivative(x(t), (t, 2)) + a12*Derivative(y(t), (t, 2)) + b11*Derivative(x(t), t) + b12*Derivative(y(t), t) + c11*x(t) + c12*y(t),0),Eq(a21*Derivative(x(t), (t, 2)) + a22*Derivative(y(t), (t, 2)) + b21*Derivative(x(t), t) + b22*Derivative(y(t), t) + c21*x(t) + c22*y(t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out