60.9.32 problem 1887

Internal problem ID [11811]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 8, system of first order odes
Problem number : 1887
Date solved : Sunday, March 30, 2025 at 09:15:51 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d^{2}}{d t^{2}}x \left (t \right )&=a x \left (t \right )+b y \left (t \right )\\ \frac {d^{2}}{d t^{2}}y \left (t \right )&=c x \left (t \right )+d y \left (t \right ) \end{align*}

Maple. Time used: 0.165 (sec). Leaf size: 417
ode:=[diff(diff(x(t),t),t) = a*x(t)+b*y(t), diff(diff(y(t),t),t) = c*x(t)+d*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{-\frac {\sqrt {-2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+c_2 \,{\mathrm e}^{\frac {\sqrt {-2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+c_3 \,{\mathrm e}^{-\frac {\sqrt {2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+c_4 \,{\mathrm e}^{\frac {\sqrt {2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}} \\ y \left (t \right ) &= \left (\frac {d}{2 b}+\frac {\frac {\sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {a}{2}}{b}\right ) c_4 \,{\mathrm e}^{\frac {\sqrt {2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+\left (\frac {d}{2 b}+\frac {\frac {\sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {a}{2}}{b}\right ) c_3 \,{\mathrm e}^{-\frac {\sqrt {2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+\left (\frac {d}{2 b}+\frac {-\frac {\sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {a}{2}}{b}\right ) c_2 \,{\mathrm e}^{\frac {\sqrt {-2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}}+\left (\frac {d}{2 b}+\frac {-\frac {\sqrt {a^{2}-2 a d +4 b c +d^{2}}}{2}-\frac {a}{2}}{b}\right ) c_1 \,{\mathrm e}^{-\frac {\sqrt {-2 \sqrt {a^{2}-2 a d +4 b c +d^{2}}+2 a +2 d}\, t}{2}} \\ \end{align*}
Mathematica. Time used: 0.22 (sec). Leaf size: 5647
ode={D[x[t],{t,2}]==a*x[t]+b*y[t],D[y[t],{t,2}]==c*x[t]+d*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 2.829 (sec). Leaf size: 717
from sympy import * 
t = symbols("t") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-a*x(t) - b*y(t) + Derivative(x(t), (t, 2)),0),Eq(-c*x(t) - d*y(t) + Derivative(y(t), (t, 2)),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {\sqrt {2} C_{1} b \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} e^{- \frac {\sqrt {2} t \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{a d - 2 b c - d^{2} + d \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} - \frac {\sqrt {2} C_{2} b \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} e^{\frac {\sqrt {2} t \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{a d - 2 b c - d^{2} + d \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} + \frac {\sqrt {2} C_{3} b \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} e^{\frac {\sqrt {2} t \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{- a d + 2 b c + d^{2} + d \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} - \frac {\sqrt {2} C_{4} b \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}} e^{- \frac {\sqrt {2} t \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{- a d + 2 b c + d^{2} + d \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}, \ y{\left (t \right )} = - \frac {\sqrt {2} C_{1} e^{- \frac {\sqrt {2} t \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{\sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}} + \frac {\sqrt {2} C_{2} e^{\frac {\sqrt {2} t \sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{\sqrt {a + d - \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}} + \frac {\sqrt {2} C_{3} e^{\frac {\sqrt {2} t \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{\sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}} - \frac {\sqrt {2} C_{4} e^{- \frac {\sqrt {2} t \sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}{2}}}{\sqrt {a + d + \sqrt {a^{2} - 2 a d + 4 b c + d^{2}}}}\right ] \]