60.9.22 problem 1877

Internal problem ID [11801]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 8, system of first order odes
Problem number : 1877
Date solved : Sunday, March 30, 2025 at 09:15:41 PM
CAS classification : system_of_ODEs

\begin{align*} t \left (\frac {d}{d t}x \left (t \right )\right )+y \left (t \right )&=0\\ t \left (\frac {d}{d t}y \left (t \right )\right )+x \left (t \right )&=0 \end{align*}

Maple. Time used: 0.099 (sec). Leaf size: 30
ode:=[t*diff(x(t),t)+y(t) = 0, t*diff(y(t),t)+x(t) = 0]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \frac {c_2 \,t^{2}+c_1}{t} \\ y \left (t \right ) &= \frac {-c_2 \,t^{2}+c_1}{t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 31
ode={t*D[x[t],t]+y[t]==0,t*D[y[t],t]+x[t]==0}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to c_1 t+\frac {c_2}{t} \\ y(t)\to \frac {c_2}{t}-c_1 t \\ \end{align*}
Sympy. Time used: 0.111 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(t*Derivative(x(t), t) + y(t),0),Eq(t*Derivative(y(t), t) + x(t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {C_{1}}{t} - C_{2} t, \ y{\left (t \right )} = \frac {C_{1}}{t} + C_{2} t\right ] \]