60.7.167 problem 1785 (book 6.194)

Internal problem ID [11717]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1785 (book 6.194)
Date solved : Sunday, March 30, 2025 at 08:44:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime \prime }-\left ({y^{\prime }}^{2}+1\right ) \left (x y^{\prime }-y\right )&=0 \end{align*}

Maple. Time used: 0.069 (sec). Leaf size: 53
ode:=(x^2+y(x)^2)*diff(diff(y(x),x),x)-(1+diff(y(x),x)^2)*(-y(x)+x*diff(y(x),x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= \tan \left (\operatorname {RootOf}\left (-x^{2}+\cos \left (\textit {\_Z} \right )^{2} {\mathrm e}^{-\frac {2 \left (i c_1 \textit {\_Z} +c_1 c_2 +i \textit {\_Z} -c_2 \right )}{-1+c_1}}\right )\right ) x \\ \end{align*}
Mathematica. Time used: 0.301 (sec). Leaf size: 340
ode=(y[x] - x*D[y[x],x])*(1 + D[y[x],x]^2) + (x^2 + y[x]^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\frac {1}{K[5]-x \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {K[5]}{x}}\frac {1}{K[4]^2+1}dK[4]\right ]}dK[5]-\int _1^x\left (\int _1^{y(x)}-\frac {\frac {K[5] \left (\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {K[5]}{K[6]}}\frac {1}{K[4]^2+1}dK[4]\right ]{}^2+1\right )}{\left (\frac {K[5]^2}{K[6]^2}+1\right ) K[6]}-\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {K[5]}{K[6]}}\frac {1}{K[4]^2+1}dK[4]\right ]}{\left (K[5]-K[6] \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {K[5]}{K[6]}}\frac {1}{K[4]^2+1}dK[4]\right ]\right ){}^2}dK[5]+\frac {\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {y(x)}{K[6]}}\frac {1}{K[4]^2+1}dK[4]\right ]}{y(x)-K[6] \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[3]^2+1}dK[3]\&\right ]\left [c_1+\int _1^{\frac {y(x)}{K[6]}}\frac {1}{K[4]^2+1}dK[4]\right ]}\right )dK[6]=c_2,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + y(x)**2)*Derivative(y(x), (x, 2)) - (x*Derivative(y(x), x) - y(x))*(Derivative(y(x), x)**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out