60.7.153 problem 1770 (book 6.179)

Internal problem ID [11703]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1770 (book 6.179)
Date solved : Sunday, March 30, 2025 at 08:43:04 PM
CAS classification : [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 25
ode:=2*x*y(x)*diff(diff(y(x),x),x)-x*diff(y(x),x)^2+y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= c_1 \sqrt {x}\, c_2 +c_1^{2} x +\frac {c_2^{2}}{4} \\ \end{align*}
Mathematica. Time used: 0.237 (sec). Leaf size: 18
ode=y[x]*D[y[x],x] - x*D[y[x],x]^2 + 2*x*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \left (\sqrt {x}+c_1\right ){}^2 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((8*x**2*Derivative(y(x), (x, 2)) + y(x))*y(x)) + y(x))/(2*x) cannot be solved by the factorable group method