Internal
problem
ID
[11699]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1766
(book
6.175)
Date
solved
:
Sunday, March 30, 2025 at 08:42:57 PM
CAS
classification
:
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x*y(x)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)^2+a*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*y[x]*D[y[x],x] - 2*x*D[y[x],x]^2 + x*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*y(x)*Derivative(y(x), x) + x*y(x)*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*y(x) + sqrt((a**2*y(x) + 8*x**2*Derivative(y(x), (x, 2)))*y(x)))/(4*x) cannot be solved by the factorable group method