Internal
problem
ID
[11688]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1754
(book
6.163)
Date
solved
:
Sunday, March 30, 2025 at 08:42:33 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=12*diff(diff(y(x),x),x)*y(x)-15*diff(y(x),x)^2+8*y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=8*y[x]^3 - 15*D[y[x],x]^2 + 12*y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*y(x)**3 + 12*y(x)*Derivative(y(x), (x, 2)) - 15*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*sqrt(15)*sqrt((2*y(x)**2 + 3*Derivative(y(x), (x, 2)))*y(x))/15 + Derivative(y(x), x) cannot be solved by the factorable group method