60.7.119 problem 1732 (book 6.141)

Internal problem ID [11669]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1732 (book 6.141)
Date solved : Sunday, March 30, 2025 at 08:40:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime } y-{y^{\prime }}^{2}-8 y^{3}-4 y^{2}&=0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 63
ode:=2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-8*y(x)^3-4*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ \int _{}^{y}\frac {1}{\sqrt {\left (4 \textit {\_a}^{2}+c_1 +4 \textit {\_a} \right ) \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\left (4 \textit {\_a}^{2}+c_1 +4 \textit {\_a} \right ) \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 1.071 (sec). Leaf size: 1095
ode=-4*y[x]^2 - 8*y[x]^3 - D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x)**3 - 4*y(x)**2 + 2*y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE sqrt(2)*sqrt(-(4*y(x)**2 + 2*y(x) - Derivative(y(x), (x, 2)))*y(x)) + Derivative(y(x), x) cannot be solved by the factorable group method