60.7.115 problem 1728 (book 6.137)

Internal problem ID [11665]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1728 (book 6.137)
Date solved : Sunday, March 30, 2025 at 08:37:30 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 y^{\prime \prime } y+{y^{\prime }}^{2}+1&=0 \end{align*}

Maple. Time used: 0.119 (sec). Leaf size: 327
ode:=2*diff(diff(y(x),x),x)*y(x)+diff(y(x),x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-\operatorname {RootOf}\left (\left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right ) \left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right )\right ) c_1 +2 x +2 c_2 \right ) \tan \left (\operatorname {RootOf}\left (\left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right ) \left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right )\right )\right )}{2}+\frac {c_1}{2} \\ y &= \frac {\left (-\operatorname {RootOf}\left (\left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right ) \left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right )\right ) c_1 -2 x -2 c_2 \right ) \tan \left (\operatorname {RootOf}\left (\left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right ) \left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right )\right )\right )}{2}+\frac {c_1}{2} \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right ) \left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right )\right ) c_1 -2 x -2 c_2 \right ) \tan \left (\operatorname {RootOf}\left (\left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right ) \left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} -2 c_2 -2 x \right )\right )\right )}{2}+\frac {c_1}{2} \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right ) \left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right )\right ) c_1 +2 x +2 c_2 \right ) \tan \left (\operatorname {RootOf}\left (\left (c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right ) \left (-c_1 \cos \left (\textit {\_Z} \right )+c_1 \textit {\_Z} +2 c_2 +2 x \right )\right )\right )}{2}+\frac {c_1}{2} \\ \end{align*}
Mathematica. Time used: 1.36 (sec). Leaf size: 516
ode=1 + D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {e^{3 (-c_1)} \sqrt {1-\text {$\#$1} e^{-2 (-c_1)}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-(-c_1)}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 (-c_1)}\right )}{\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 (-c_1)} \sqrt {1-\text {$\#$1} e^{-2 (-c_1)}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-(-c_1)}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 (-c_1)}\right )}{\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-2*y(x)*Derivative(y(x), (x, 2)) - 1) + Derivative(y(x), x) cannot be solved by the factorable group method