Internal
problem
ID
[11662]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1725
(book
6.134)
Date
solved
:
Sunday, March 30, 2025 at 08:37:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
ode:=diff(diff(y(x),x),x)*(x-y(x))+2*diff(y(x),x)*(diff(y(x),x)+1) = 0; dsolve(ode,y(x), singsol=all);
ode=2*D[y[x],x]*(1 + D[y[x],x]) + (x - y[x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - y(x))*Derivative(y(x), (x, 2)) + (2*Derivative(y(x), x) + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-2*x*Derivative(y(x), (x, 2)) + 2*y(x)*Derivative(y(x), (x, 2)) + 1)/2 + Derivative(y(x), x) + 1/2 cannot be solved by the factorable group method