60.7.105 problem 1717 (book 6.126)

Internal problem ID [11655]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1717 (book 6.126)
Date solved : Sunday, March 30, 2025 at 08:33:34 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime } y+a \left ({y^{\prime }}^{2}+1\right )&=0 \end{align*}

Maple. Time used: 0.040 (sec). Leaf size: 61
ode:=diff(diff(y(x),x),x)*y(x)+a*(1+diff(y(x),x)^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {\textit {\_a}^{a}}{\sqrt {-\textit {\_a}^{2 a}+c_1}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {\textit {\_a}^{a}}{\sqrt {-\textit {\_a}^{2 a}+c_1}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.799 (sec). Leaf size: 526
ode=a*(1 + D[y[x],x]^2) + y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {\text {$\#$1} \sqrt {1-e^{2 (-c_1)} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 (-c_1)} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 (-c_1)} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt {1-e^{2 (-c_1)} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 (-c_1)} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 (-c_1)} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-\frac {1}{2 a},1-\frac {1}{2 a},e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*(Derivative(y(x), x)**2 + 1) + y(x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE sqrt(-(a + y(x)*Derivative(y(x), (x, 2)))/a) + Derivative(y(x), x) cannot be solved by the factorable group method