Internal
problem
ID
[11612]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1670
(book
6.79)
Date
solved
:
Sunday, March 30, 2025 at 08:31:33 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=x*diff(diff(y(x),x),x)-x^2*diff(y(x),x)^2+2*diff(y(x),x)+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]^2 + 2*D[y[x],x] - x^2*D[y[x],x]^2 + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*Derivative(y(x), x)**2 + x*Derivative(y(x), (x, 2)) + y(x)**2 + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(x**3*Derivative(y(x), (x, 2)) + x**2*y(x)**2 + 1) + 1)/x**2 cannot be solved by the factorable group method