60.7.41 problem 1638 (6.48)

Internal problem ID [11591]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1638 (6.48)
Date solved : Sunday, March 30, 2025 at 08:30:08 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right )&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 211
ode:=diff(diff(y(x),x),x)+a*diff(y(x),x)^2+b*sin(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} 4 \int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 \sin \left (\textit {\_a} \right ) a b +{\mathrm e}^{-2 a \textit {\_a}} c_1 +2 \cos \left (\textit {\_a} \right ) b \right )}}d \textit {\_a} a^{2}+\int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 \sin \left (\textit {\_a} \right ) a b +{\mathrm e}^{-2 a \textit {\_a}} c_1 +2 \cos \left (\textit {\_a} \right ) b \right )}}d \textit {\_a} -c_2 -x &= 0 \\ -4 \int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 \sin \left (\textit {\_a} \right ) a b +{\mathrm e}^{-2 a \textit {\_a}} c_1 +2 \cos \left (\textit {\_a} \right ) b \right )}}d \textit {\_a} a^{2}-\int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 \sin \left (\textit {\_a} \right ) a b +{\mathrm e}^{-2 a \textit {\_a}} c_1 +2 \cos \left (\textit {\_a} \right ) b \right )}}d \textit {\_a} -c_2 -x &= 0 \\ \end{align*}
Mathematica. Time used: 0.486 (sec). Leaf size: 338
ode=b*Sin[y[x]] + a*D[y[x],x]^2 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-b e^{2 a K[1]} \sin (K[1])dK[1]}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-b e^{2 a K[1]} \sin (K[1])dK[1]}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {2 \int _1^{K[2]}-b e^{2 a K[1]} \sin (K[1])dK[1]-c_1}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-b e^{2 a K[1]} \sin (K[1])dK[1]}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {2 \int _1^{K[3]}-b e^{2 a K[1]} \sin (K[1])dK[1]-c_1}}dK[3]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-b e^{2 a K[1]} \sin (K[1])dK[1]}}dK[3]\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x)**2 + b*sin(y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(b*sin(y(x)) + Derivative(y(x), (x, 2)))/a) + Derivative(y(x), x) cannot be solved by the factorable group method