Internal
problem
ID
[11494]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1529
Date
solved
:
Sunday, March 30, 2025 at 08:23:35 PM
CAS
classification
:
[[_3rd_order, _fully, _exact, _linear]]
ode:=(sin(x)+x)*diff(diff(diff(y(x),x),x),x)+3*(cos(x)+1)*diff(diff(y(x),x),x)-3*diff(y(x),x)*sin(x)-y(x)*cos(x)+sin(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Sin[x] - Cos[x]*y[x] - 3*Sin[x]*D[y[x],x] + 3*(1 + Cos[x])*D[y[x],{x,2}] + (x + Sin[x])*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + sin(x))*Derivative(y(x), (x, 3)) + (3*cos(x) + 3)*Derivative(y(x), (x, 2)) - y(x)*cos(x) - 3*sin(x)*Derivative(y(x), x) + sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(x*Derivative(y(x), (x, 3)) + (Derivative(y(x), (x, 3)) + 1)*sin(x) - y(x)*cos(x) + 3*cos(x)*Derivative(y(x), (x, 2)) + 3*Derivative(y(x), (x, 2)))/(3*sin(x)) + Derivative(y(x), x) cannot be solved by the factorable group method