Internal
problem
ID
[11481]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1516
Date
solved
:
Sunday, March 30, 2025 at 08:23:05 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+(x+3)*x^2*diff(diff(y(x),x),x)+5*(x-6)*x*diff(y(x),x)+(4*x+30)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(30 + 4*x)*y[x] + 5*(-6 + x)*x*D[y[x],x] + x^2*(3 + x)*D[y[x],{x,2}] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + x**2*(x + 3)*Derivative(y(x), (x, 2)) + x*(5*x - 30)*Derivative(y(x), x) + (4*x + 30)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 2)) - x**3*Derivative(y(x), (x, 3)) - 3*x**2*Derivative(y(x), (x, 2)) - 4*x*y(x) - 30*y(x))/(5*x*(x - 6)) cannot be solved by the factorable group method