Internal
problem
ID
[11475]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1510
Date
solved
:
Sunday, March 30, 2025 at 08:22:59 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+(a*x^(2*nu)+1-nu^2)*x*diff(y(x),x)+(b*x^(3*nu)+a*(nu-1)*x^(2*nu)+nu^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + nu^2 + a*(-1 + nu)*x^(2*nu) + b*x^(3*nu))*y[x] + x*(1 - nu^2 + a*x^(2*nu))*D[y[x],x] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") nu = symbols("nu") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + x*(a*x**(2*nu) - nu**2 + 1)*Derivative(y(x), x) + (a*x**(2*nu)*(nu - 1) + b*x**(3*nu) + nu**2 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*nu*x**(2*nu)*y(x) + a*x**(2*nu)*y(x) - b*x**(3*nu)*y(x) - nu**2*y(x) - x**3*Derivative(y(x), (x, 3)) + y(x))/(x*(a*x**(2*nu) - nu**2 + 1)) cannot be solved by the factorable group method