Internal
problem
ID
[11463]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1496
Date
solved
:
Sunday, March 30, 2025 at 08:22:45 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)+6*x*diff(diff(y(x),x),x)+6*diff(y(x),x)+a*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*x^2*y[x] + 6*D[y[x],x] + 6*x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*x**2*y(x) + x**2*Derivative(y(x), (x, 3)) + 6*x*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-a*x*y(x) - x*Derivative(y(x), (x, 3)) - 6*Derivative(y(x), (x, 2)))/6 + Derivative(y(x), x) cannot be solved by the factorable group method