60.4.38 problem 1494

Internal problem ID [11461]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1494
Date solved : Sunday, March 30, 2025 at 08:22:43 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right )&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 32
ode:=x^2*diff(diff(diff(y(x),x),x),x)+5*x*diff(diff(y(x),x),x)+4*diff(y(x),x)-ln(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x^{2}+4 c_2 \right ) \ln \left (x \right )-2 x^{2}+4 c_1 x +4 c_3}{4 x} \]
Mathematica. Time used: 0.042 (sec). Leaf size: 43
ode=-Log[x] + 4*D[y[x],x] + 5*x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\left (x^2-8 c_2\right ) \log (x)-2 \left (x^2-2 c_3 x+2 c_1+4 c_2\right )}{4 x} \]
Sympy. Time used: 0.307 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 3)) + 5*x*Derivative(y(x), (x, 2)) - log(x) + 4*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + \frac {C_{3} \log {\left (x \right )}}{x} + \frac {x \log {\left (x \right )}}{4} - \frac {x}{2} \]