Internal
problem
ID
[11447]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1480
Date
solved
:
Sunday, March 30, 2025 at 08:22:24 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x*diff(diff(diff(y(x),x),x),x)-(x+2*v)*diff(diff(y(x),x),x)-(x-2*v-1)*diff(y(x),x)+(x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + x)*y[x] - (-1 - 2*v + x)*D[y[x],x] - (2*v + x)*D[y[x],{x,2}] + x*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 3)) - (2*v + x)*Derivative(y(x), (x, 2)) + (x - 1)*y(x) - (-2*v + x - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*v*Derivative(y(x), (x, 2)) - x*y(x) + x*Derivative(y(x), (x, 2)) - x*Derivative(y(x), (x, 3)) + y(x))/(2*v - x + 1) cannot be solved by the factorable group method