Internal
problem
ID
[11417]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1438
Date
solved
:
Sunday, March 30, 2025 at 08:21:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(-a*cos(x)^2*sin(x)^2-m*(m-1)*sin(x)^2-n*(n-1)*cos(x)^2)/cos(x)^2/sin(x)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(Csc[x]^2*Sec[x]^2*((1 - n)*n*Cos[x]^2 - (-1 + m)*m*Sin[x]^2 - a*Cos[x]^2*Sin[x]^2)*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq((-a*sin(x)**2*cos(x)**2 - m*(m - 1)*sin(x)**2 - n*(n - 1)*cos(x)**2)*y(x)/(sin(x)**2*cos(x)**2) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve (-a*sin(x)**2*cos(x)**2 - m*(m - 1)*sin(x)**2 - n*(n - 1)*cos(x)**2)*y(x)/(sin(x)**2*cos(x)**2) + Derivative(y(x), (x, 2))