Internal
problem
ID
[11412]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1433
Date
solved
:
Sunday, March 30, 2025 at 08:21:12 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x) = -sin(x)/cos(x)*diff(y(x),x)-1/4*(2*x^2+x^2*sin(x)^2-24*cos(x)^2)/x^2/cos(x)^2*y(x)+cos(x)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == Sqrt[Cos[x]] - (Sec[x]^2*(2*x^2 - 24*Cos[x]^2 + x^2*Sin[x]^2)*y[x])/(4*x^2) - Tan[x]*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sin(x)*Derivative(y(x), x)/cos(x) - sqrt(cos(x)) + Derivative(y(x), (x, 2)) + (x**2*sin(x)**2 + 2*x**2 - 24*cos(x)**2)*y(x)/(4*x**2*cos(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out