Internal
problem
ID
[11391]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1412
Date
solved
:
Sunday, March 30, 2025 at 08:19:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = 1/x/ln(x)*diff(y(x),x)+ln(x)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == Log[x]^2*y[x] + D[y[x],x]/(x*Log[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*log(x)**2 + Derivative(y(x), (x, 2)) - Derivative(y(x), x)/(x*log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-y(x)*log(x)**2 + Derivative(y(x), (x, 2)))*log(x) + Derivative(y(x), x) cannot be solved by the factorable group method