Internal
problem
ID
[11388]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1409
Date
solved
:
Sunday, March 30, 2025 at 08:19:43 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = -a*x^(2*a-1)/(x^(2*a))*diff(y(x),x)-b^2/(x^(2*a))*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((b^2*y[x])/x^(2*a)) - (a*D[y[x],x])/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*x**(2*a - 1)*Derivative(y(x), x)/x**(2*a) + b**2*y(x)/x**(2*a) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : invalid input: 1 - a