Internal
problem
ID
[11362]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1383
Date
solved
:
Sunday, March 30, 2025 at 08:18:19 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -((alpha+beta+1)*(x-a)^2*(x-b)+(1-alpha-beta)*(x-b)^2*(x-a))/(x-a)^2/(x-b)^2*diff(y(x),x)-alpha*beta*(a-b)^2/(x-a)^2/(x-b)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((\[Alpha]*(a - b)^2*\[Beta]*y[x])/((-a + x)^2*(-b + x)^2)) - (((1 + \[Alpha] + \[Beta])*(-a + x)^2*(-b + x) + (1 - \[Alpha] - \[Beta])*(-a + x)*(-b + x)^2)*D[y[x],x])/((-a + x)^2*(-b + x)^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Alpha*BETA*(a - b)**2*y(x)/((-a + x)**2*(-b + x)**2) + Derivative(y(x), (x, 2)) + ((-a + x)**2*(-b + x)*(Alpha + BETA + 1) + (-a + x)*(-b + x)**2*(-Alpha - BETA + 1))*Derivative(y(x), x)/((-a + x)**2*(-b + x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False