Internal
problem
ID
[11302]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1323
Date
solved
:
Sunday, March 30, 2025 at 08:11:01 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = -2/x*(x-2)/(x-1)*diff(y(x),x)+2/x^2*(1+x)/(x-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -2/x*(x-2)/(x-1)*D[y[x],x]+2/x^2*(x+1)/(x-1)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (2*x - 4)*Derivative(y(x), x)/(x*(x - 1)) - (2*x + 2)*y(x)/(x**2*(x - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False