Internal
problem
ID
[11280]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1301
Date
solved
:
Sunday, March 30, 2025 at 08:07:47 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(a*x^2+b*x)*diff(diff(y(x),x),x)+2*b*diff(y(x),x)-2*a*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*a*y[x] + 2*b*D[y[x],x] + (b*x + a*x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-2*a*y(x) + 2*b*Derivative(y(x), x) + (a*x**2 + b*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False