60.3.281 problem 1297

Internal problem ID [11277]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1297
Date solved : Sunday, March 30, 2025 at 08:04:52 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 57
ode:=(a*x^2+1)*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+1}\right )^{\frac {i \sqrt {b}}{\sqrt {a}}}+c_2 \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+1}\right )^{-\frac {i \sqrt {b}}{\sqrt {a}}} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 52
ode=b*y[x] + a*x*D[y[x],x] + (1 + a*x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos \left (\frac {\sqrt {b} \text {arcsinh}\left (\sqrt {a} x\right )}{\sqrt {a}}\right )+c_2 \sin \left (\frac {\sqrt {b} \text {arcsinh}\left (\sqrt {a} x\right )}{\sqrt {a}}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + b*y(x) + (a*x**2 + 1)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False