Internal
problem
ID
[11277]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1297
Date
solved
:
Sunday, March 30, 2025 at 08:04:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(a*x^2+1)*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+b*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=b*y[x] + a*x*D[y[x],x] + (1 + a*x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*x*Derivative(y(x), x) + b*y(x) + (a*x**2 + 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False