Internal
problem
ID
[11261]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1281
Date
solved
:
Sunday, March 30, 2025 at 08:04:17 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*diff(diff(y(x),x),x)-4*x*(2*x-1)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 - 4*x + 4*x^2)*y[x] - 4*x*(-1 + 2*x)*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 4*x*(2*x - 1)*Derivative(y(x), x) + (4*x**2 - 4*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False