60.3.243 problem 1259

Internal problem ID [11239]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1259
Date solved : Sunday, March 30, 2025 at 07:58:04 PM
CAS classification : [_Jacobi]

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }-l y&=0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 92
ode:=x*(x-1)*diff(diff(y(x),x),x)+((a+1)*x+b)*diff(y(x),x)-l*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {hypergeom}\left (\left [\frac {a}{2}-\frac {\sqrt {a^{2}+4 l}}{2}, \frac {a}{2}+\frac {\sqrt {a^{2}+4 l}}{2}\right ], \left [-b \right ], x\right )+c_2 \,x^{1+b} \operatorname {hypergeom}\left (\left [\frac {a}{2}-\frac {\sqrt {a^{2}+4 l}}{2}+b +1, \frac {a}{2}+\frac {\sqrt {a^{2}+4 l}}{2}+b +1\right ], \left [2+b \right ], x\right ) \]
Mathematica. Time used: 0.17 (sec). Leaf size: 111
ode=-(l*y[x]) + (b + (1 + a)*x)*D[y[x],x] + (-1 + x)*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (a-\sqrt {a^2+4 l}\right ),\frac {1}{2} \left (a+\sqrt {a^2+4 l}\right ),-b,x\right )-(-1)^b c_2 x^{b+1} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (a+2 b-\sqrt {a^2+4 l}+2\right ),\frac {1}{2} \left (a+2 b+\sqrt {a^2+4 l}+2\right ),b+2,x\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
l = symbols("l") 
y = Function("y") 
ode = Eq(-l*y(x) + x*(x - 1)*Derivative(y(x), (x, 2)) + (b + x*(a + 1))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None