Internal
problem
ID
[11226]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1246
Date
solved
:
Sunday, March 30, 2025 at 07:57:36 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(x^2-1)*diff(diff(y(x),x),x)-2*(v-1)*x*diff(y(x),x)-2*v*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*v*y[x] - 2*(-1 + v)*x*D[y[x],x] + (-1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") ode = Eq(-2*v*y(x) - x*(2*v - 2)*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False