60.3.217 problem 1232

Internal problem ID [11213]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1232
Date solved : Sunday, March 30, 2025 at 07:46:19 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {d}{d x}\operatorname {LegendreP}\left (n , x\right )&=0 \end{align*}

Maple. Time used: 0.106 (sec). Leaf size: 409
ode:=(x^2-1)*diff(diff(y(x),x),x)-n*(n+1)*y(x)+Diff(LegendreP(n,x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 11.047 (sec). Leaf size: 468
ode=(-(n*LegendreP[-1 + n, x]) + n*x*LegendreP[n, x])/(-1 + x^2) - n*(1 + n)*y[x] + (-1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \operatorname {Hypergeometric2F1}\left (-\frac {n}{2}-\frac {1}{2},\frac {n}{2},\frac {1}{2},x^2\right ) \int _1^x\frac {3 n \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},K[1]^2\right ) K[1] (\operatorname {LegendreP}(n-1,K[1])-K[1] \operatorname {LegendreP}(n,K[1]))}{\left (K[1]^2-1\right )^2 \left (n \operatorname {Hypergeometric2F1}\left (-\frac {n}{2}-\frac {1}{2},\frac {n}{2},\frac {1}{2},K[1]^2\right ) \left ((n+1) \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},\frac {n+3}{2},\frac {5}{2},K[1]^2\right ) K[1]^2+3 \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},K[1]^2\right )\right )-3 (n+1) \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-\frac {n}{2},\frac {n}{2},\frac {1}{2},K[1]^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},K[1]^2\right )\right )}dK[1]+i x \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},x^2\right ) \int _1^x\frac {3 i n \operatorname {Hypergeometric2F1}\left (-\frac {n}{2}-\frac {1}{2},\frac {n}{2},\frac {1}{2},K[2]^2\right ) (\operatorname {LegendreP}(n-1,K[2])-K[2] \operatorname {LegendreP}(n,K[2]))}{\left (K[2]^2-1\right )^2 \left (n \operatorname {Hypergeometric2F1}\left (-\frac {n}{2}-\frac {1}{2},\frac {n}{2},\frac {1}{2},K[2]^2\right ) \left ((n+1) \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},\frac {n+3}{2},\frac {5}{2},K[2]^2\right ) K[2]^2+3 \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},K[2]^2\right )\right )-3 (n+1) \operatorname {Hypergeometric2F1}\left (\frac {1}{2}-\frac {n}{2},\frac {n}{2},\frac {1}{2},K[2]^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},K[2]^2\right )\right )}dK[2]+c_1 \operatorname {Hypergeometric2F1}\left (-\frac {n}{2}-\frac {1}{2},\frac {n}{2},\frac {1}{2},x^2\right )+i c_2 x \operatorname {Hypergeometric2F1}\left (-\frac {n}{2},\frac {n+1}{2},\frac {3}{2},x^2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-n*(n + 1)*y(x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + Diff(LegendreP(n, x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve -n*(n + 1)*y(x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + Diff(LegendreP(n, x), x)