60.3.208 problem 1223

Internal problem ID [11204]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1223
Date solved : Sunday, March 30, 2025 at 07:46:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-9 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=(x^2+1)*diff(diff(y(x),x),x)+x*diff(y(x),x)-9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \cosh \left (3 \,\operatorname {arcsinh}\left (x \right )\right )+\left (4 x^{3}+3 x \right ) c_1 \]
Mathematica. Time used: 0.029 (sec). Leaf size: 25
ode=-9*y[x] + x*D[y[x],x] + (1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cosh (3 \text {arcsinh}(x))+i c_2 \sinh (3 \text {arcsinh}(x)) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 9*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False