Internal
problem
ID
[11105]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1123
Date
solved
:
Sunday, March 30, 2025 at 07:42:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)-(2*a*x^2+1)*diff(y(x),x)+b*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=b*x^3*y[x] - (1 + 2*a*x^2)*D[y[x],x] + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b*x**3*y(x) + x*Derivative(y(x), (x, 2)) - (2*a*x**2 + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False