Internal
problem
ID
[11064]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1079
Date
solved
:
Sunday, March 30, 2025 at 07:41:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x)-a*diff(f(x),x)/f(x)*diff(y(x),x)+b*f(x)^(2*a)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=b*f[x]^(2*a)*y[x] - (a*Derivative[1][f][x]*D[y[x],x])/f[x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") f = Function("f") ode = Eq(-a*Derivative(f(x), x)*Derivative(y(x), x)/f(x) + b*f(x)**(2*a)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational