Internal
problem
ID
[11056]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1065
Date
solved
:
Sunday, March 30, 2025 at 07:41:10 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*n*diff(y(x),x)*cot(x)+(-a^2+n^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-a^2 + n^2)*y[x] + 2*n*Cot[x]*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(2*n*Derivative(y(x), x)/tan(x) + (-a**2 + n**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a**2*y(x) - n**2*y(x) - Derivative(y(x), (x, 2)))*tan(x)/(2*n) cannot be solved by the factorable group method