Internal
problem
ID
[11042]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1051
Date
solved
:
Sunday, March 30, 2025 at 07:40:06 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(4*x^2-3)*y(x)-exp(x^2) = 0; dsolve(ode,y(x), singsol=all);
ode=-E^x^2 + (-3 + 4*x^2)*y[x] - 4*x*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*Derivative(y(x), x) + (4*x**2 - 3)*y(x) - exp(x**2) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*y(x) - 3*y(x) - exp(x**2) + Derivative(y(x), (x, 2)))/(4*x) cannot be solved by the factorable group method