60.3.38 problem 1043

Internal problem ID [11034]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1043
Date solved : Sunday, March 30, 2025 at 07:39:54 PM
CAS classification : [_Hermite]

\begin{align*} y^{\prime \prime }-x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 42
ode:=diff(diff(y(x),x),x)-x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 \,{\mathrm e}^{\frac {x^{2}}{2}} c_1 x -\left (x -1\right ) \left (x +1\right ) \left (\operatorname {erfi}\left (\frac {\sqrt {2}\, x}{2}\right ) \sqrt {\pi }\, \sqrt {2}\, c_1 -c_2 \right ) \]
Mathematica. Time used: 0.225 (sec). Leaf size: 43
ode=2*y[x] - x*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^2-1\right ) \left (c_2 \int _1^x\frac {e^{\frac {K[1]^2}{2}}}{\left (K[1]^2-1\right )^2}dK[1]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + 2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False