60.3.34 problem 1039

Internal problem ID [11030]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1039
Date solved : Sunday, March 30, 2025 at 07:39:47 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\operatorname {erf}\left (\frac {i \sqrt {2}\, x}{2}\right ) c_1 +c_2 \right ) {\mathrm e}^{-\frac {x^{2}}{2}} \]
Mathematica. Time used: 0.039 (sec). Leaf size: 41
ode=y[x] + x*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{-\frac {x^2}{2}} \left (\sqrt {2 \pi } c_1 \text {erfi}\left (\frac {x}{\sqrt {2}}\right )+2 c_2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False