60.3.30 problem 1035

Internal problem ID [11026]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1035
Date solved : Sunday, March 30, 2025 at 07:39:34 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+a y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+a*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x \sqrt {a^{2}-4 b}}+c_2 \right ) {\mathrm e}^{-\frac {\left (a +\sqrt {a^{2}-4 b}\right ) x}{2}} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 47
ode=b*y[x] + a*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {1}{2} x \left (\sqrt {a^2-4 b}+a\right )} \left (c_2 e^{x \sqrt {a^2-4 b}}+c_1\right ) \]
Sympy. Time used: 0.225 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (- a + \sqrt {a^{2} - 4 b}\right )}{2}} + C_{2} e^{- \frac {x \left (a + \sqrt {a^{2} - 4 b}\right )}{2}} \]