Internal
problem
ID
[10877]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
881
Date
solved
:
Sunday, March 30, 2025 at 07:18:53 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-18*x*y(x)-6*x^3-18*x+27*y(x)^3+27*x^2*y(x)^2+9*y(x)*x^4+x^6)/(27*y(x)+9*x^2+27); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-18*x - 6*x^3 + x^6 - 18*x*y[x] + 9*x^4*y[x] + 27*x^2*y[x]^2 + 27*y[x]^3)/(27 + 9*x^2 + 27*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6 + 9*x**4*y(x) - 6*x**3 + 27*x**2*y(x)**2 - 18*x*y(x) - 18*x + 27*y(x)**3)/(9*x**2 + 27*y(x) + 27),0) ics = {} dsolve(ode,func=y(x),ics=ics)