Internal
problem
ID
[10867]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
871
Date
solved
:
Sunday, March 30, 2025 at 07:17:42 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = 1/(2*x+1)*(2*x*y(x)^2+4*y(x)*ln(2*x+1)*x+2*ln(2*x+1)^2*x+y(x)^2-2+ln(2*x+1)^2+2*y(x)*ln(2*x+1)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-2 + Log[1 + 2*x]^2 + 2*x*Log[1 + 2*x]^2 + 2*Log[1 + 2*x]*y[x] + 4*x*Log[1 + 2*x]*y[x] + y[x]^2 + 2*x*y[x]^2)/(1 + 2*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x*y(x)**2 + 4*x*y(x)*log(2*x + 1) + 2*x*log(2*x + 1)**2 + y(x)**2 + 2*y(x)*log(2*x + 1) + log(2*x + 1)**2 - 2)/(2*x + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)