Internal
problem
ID
[162]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.6
(substitution
and
exact
equations).
Problems
at
page
72
Problem
number
:
58
Date
solved
:
Saturday, March 29, 2025 at 04:37:33 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=x*diff(y(x),x)-4*x^2*y(x)+2*y(x)*ln(y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-4*x^2*y[x]+2*y[x]*Log[ y[x] ]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2*y(x) + x*Derivative(y(x), x) + 2*y(x)*log(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)