60.2.233 problem 809

Internal problem ID [10807]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 809
Date solved : Sunday, March 30, 2025 at 07:01:10 PM
CAS classification : [[_homogeneous, `class C`], _rational, _Abel]

\begin{align*} y^{\prime }&=\frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 41
ode:=diff(y(x),x) = (-125+300*x-240*x^2+64*x^3-80*y(x)^2+64*x*y(x)^2+64*y(x)^3)/(4*x-5)^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3}-\textit {\_a}^{2}-\textit {\_a} -1}d \textit {\_a} +\ln \left (4 x -5\right )+c_1 \right ) \left (4 x -5\right )}{4} \]
Mathematica. Time used: 0.305 (sec). Leaf size: 109
ode=D[y[x],x] == (-125 + 300*x - 240*x^2 + 64*x^3 - 80*y[x]^2 + 64*x*y[x]^2 + 64*y[x]^3)/(-5 + 4*x)^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {\frac {192 y(x)}{(4 x-5)^3}+\frac {16}{(4 x-5)^2}}{16 \sqrt [3]{38} \sqrt [3]{\frac {1}{(4 x-5)^6}}}}\frac {1}{K[1]^3-\frac {6 \sqrt [3]{2} K[1]}{19^{2/3}}+1}dK[1]=\frac {1}{9} 38^{2/3} \left (\frac {1}{(5-4 x)^6}\right )^{2/3} (5-4 x)^4 \log (5-4 x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (64*x**3 - 240*x**2 + 64*x*y(x)**2 + 300*x + 64*y(x)**3 - 80*y(x)**2 - 125)/(4*x - 5)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : argument of type Mul is not iterable