60.2.230 problem 806

Internal problem ID [10804]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 806
Date solved : Sunday, March 30, 2025 at 07:00:51 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\frac {-\sin \left (2 y\right ) x -\sin \left (2 y\right )+x \cos \left (2 y\right )+x}{2 x \left (x +1\right )} \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 22
ode:=diff(y(x),x) = 1/2*(-sin(2*y(x))*x-sin(2*y(x))+x*cos(2*y(x))+x)/x/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\arctan \left (\frac {-x +\ln \left (x +1\right )-c_1}{x}\right ) \]
Mathematica. Time used: 0.316 (sec). Leaf size: 190
ode=D[y[x],x] == (x/2 + (x*Cos[2*y[x]])/2 - Sin[2*y[x]]/2 - (x*Sin[2*y[x]])/2)/(x*(1 + x)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\left (\frac {1}{2} (\cos (2 y(x))-\sin (2 y(x))+1) \sec ^2(y(x))+\frac {-\cos (2 y(x)) \sec ^2(y(x))-\sec ^2(y(x))}{2 (K[1]+1)}\right )dK[1]+\int _1^{y(x)}\left (-x \sec ^2(K[2])-\int _1^x\left (\frac {1}{2} (-2 \cos (2 K[2])-2 \sin (2 K[2])) \sec ^2(K[2])+(\cos (2 K[2])-\sin (2 K[2])+1) \tan (K[2]) \sec ^2(K[2])+\frac {2 \sin (2 K[2]) \sec ^2(K[2])-2 \cos (2 K[2]) \tan (K[2]) \sec ^2(K[2])-2 \tan (K[2]) \sec ^2(K[2])}{2 (K[1]+1)}\right )dK[1]\right )dK[2]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (-x*sin(2*y(x)) + x*cos(2*y(x)) + x - sin(2*y(x)))/(2*x*(x + 1)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out